
Private Queries in Location Based Services:
Anonymizers are not Necessary

Gabriel Ghinita1, Panos Kalnis1, Ali Khoshgozaran2, Cyrus Shahabi2, Kian-Lee Tan1

1Dept. of Computer Science
National University of Singapore

{ghinitag, kalnis, tankl}@comp.nus.edu.sg

2Dept. of Computer Science
University of Southern California

{jafkhosh, shahabi}@usc.edu∗

ABSTRACT
Mobile devices equipped with positioning capabilities (e.g.,
GPS) can ask location-dependent queries to Location Based
Services (LBS). To protect privacy, the user location must
not be disclosed. Existing solutions utilize a trusted ano-
nymizer between the users and the LBS. This approach has
several drawbacks: (i) All users must trust the third party
anonymizer, which is a single point of attack. (ii) A large
number of cooperating, trustworthy users is needed. (iii)
Privacy is guaranteed only for a single snapshot of user lo-
cations; users are not protected against correlation attacks
(e.g., history of user movement).

We propose a novel framework to support private location-
dependent queries, based on the theoretical work on Private
Information Retrieval (PIR). Our framework does not re-
quire a trusted third party, since privacy is achieved via
cryptographic techniques. Compared to existing work, our
approach achieves stronger privacy for snapshots of user lo-
cations; moreover, it is the first to provide provable privacy
guarantees against correlation attacks. We use our frame-
work to implement approximate and exact algorithms for
nearest-neighbor search. We optimize query execution by
employing data mining techniques, which identify redundant
computations. Contrary to common belief, the experimental
results suggest that PIR approaches incur reasonable over-
head and are applicable in practice.

Categories and Subject Descriptors
H.2.0 [General]: Security, integrity, and protection; H.2.8
[Database applications]: Spatial databases and GIS

General Terms
Design, Experimentation, Security

Keywords
Location Anonymity, Private Information Retrieval, Query
Privacy

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’08, June 9–12, 2008, Vancouver, BC, Canada.
Copyright 2008 ACM 978-1-60558-102-6/08/06 ...$5.00.

1. INTRODUCTION
An increasing number of communication devices (e.g., mo-

bile phones, PDAs), feature positioning capabilities (e.g.,
GPS). Users can ask location-dependent queries, such as
“find the nearest hospital”, which are answered by Loca-
tion Based Services (LBS) like Mapquest or Google Maps.
However, queries may disclose sensitive information about
individuals, including health condition, lifestyle habits, po-
litical and religious affiliations, or may result in unsolicited
advertisement (i.e., spam). Privacy concerns are expected
to rise as LBSs become more common.

Observe that privacy is not protected by replacing the real
user identity with a fake one (i.e., pseudonym), because, in
order to process location-dependent queries, the LBS needs
the exact location of the querying user. An attacker, which
may be the LBS itself, can infer the identity of the query
source by associating the location with a particular individ-
ual. This can be easily performed in practice, with the help
of a public telephone directory, for instance, which contains
subscribers’ addresses.

Most existing solutions adopt the K-anonymity [22] prin-
ciple: a query is considered private, if the probability of iden-
tifying the querying user does not exceed 1/K, where K is a
user-specified anonymity requirement. To enforce this prin-
ciple, a trusted third-party anonymizer is employed [11, 14,
17, 20] (see Figure 1). The anonymizer maintains the cur-
rent locations of all subscribed users. Instead of sending the
Nearest Neighbor (NN) query to the LBS, the user (Alice
in our example) contacts the anonymizer, which generates
a Cloaking Region (CR) enclosing Alice as well as K − 1
other users in her vicinity. In Figure 1, K = 3 and the CR
contains u1 and u2 in addition to Alice. The CR is sent to
the LBS, which cannot identify Alice with probability larger
than 1/K. The LBS computes a candidate set that includes
all points of interest (POI) which may potentially be the NN
for any point within the entire CR [15]. The candidate set
(i.e., {p1, p2, p3, p4}) is sent back to the anonymizer, which
filters the false hits and returns the actual NN (i.e., p3) to
Alice. We discuss these methods in Section 2.

Existing methods have several drawbacks: (i) The anony-
mizer is a single point of attack: if an attacker gains access
to it, the privacy of all users is compromised. It is also a bot-
tleneck, since it must process the frequent updates of user
locations. (ii) A large number of users must subscribe to the
service, otherwise CR cannot be constructed. It is assumed
that all users are trustworthy. However, if some of them are
malicious, they can easily collude to compromise the privacy

∗Authors’ work has been funded by NSF grant NSF-0742811

121

u2u1
Alice

u3

u4

p5

p1
p2

p3

p4

p6

LBS
Anonymizer

Alice

Secure connection Insecure connection

NN query

p3

3-CR

p1,p2,p3,p4

3-CR

Users POIs

Figure 1: Existing three-tier architecture

of a targeted user. (iii) It is assumed that the attacker has
no background information about the users, but in practice
it is difficult to model the exact knowledge. Assume that
Alice is searching for the nearest women’s clinic, and the
CR contains Alice and Bob. From the query content, the
attacker can identify Alice as the query source. (iv) Privacy
is guaranteed only within a static snapshot of user locations;
users are not protected against correlation attacks. For ex-
ample, if Alice asks the same query from different locations
as she moves, she can be easily identified because she will
be included in all CRs.

We propose a framework for private location-dependent
queries that solves these problems. Our framework is based
on the theory of Private Information Retrieval (PIR) and
does not need an anonymizer. Recent research on PIR [4,
19] resulted in protocols that allow a client to privately re-
trieve information from a database, without the database
server learning what particular information the client has
requested. Most techniques are expressed in a theoretical
setting, where the database is an n-bit binary string X (see
Figure 2). The client wants to find the value of the ith bit
of X (i.e., Xi). To preserve privacy, the client sends an
encrypted request q(i) to the server. The server responds
with a value r(X, q(i)), which allows the client to compute
Xi. We focus on computational PIR, which employs crypto-
graphic techniques, and relies on the fact that it is compu-
tationally intractable for an attacker to find the value of i,
given q(i). Furthermore, the client can easily determine the
value of Xi based on the server’s response r(X, q(i)). PIR
theory is discussed in Section 3.

In this paper we show that PIR can be used to compute
privately the nearest neighbor of a user with acceptable cost,
by retrieving a small fraction of the LBS’ database. Con-
sider the example of Figure 3.a, where u is the querying user
and the LBS contains four points of interest p1, p2, p3, p4. In
an off-line phase, the LBS generates a kd-tree index of the
POIs and partitions the space into three regions A,B, C.
To answer a query, the server first sends to u the regions

Alice

Client Server
(LBS)

i

Xi
r(X,q(i))

q(i)

X1

Xn

X2

...
X=

Figure 2: PIR framework

(b) Exact NN

p1

p2

p3 p4

(a) Approximate NN

p1

p2

p3 p4 uu

1

2

A B C D

1

2

3

4

{p4}

{p3,p4}

A

B

C

Figure 3: Finding the Nearest Neighbor of u

A, B, C. The user finds the region (i.e., A) that contains
him, and utilizes PIR to request all points within A; there-
fore, the server does not know which region was retrieved.
The user receives the POIs in A in encrypted form and cal-
culates p4 as his NN. The method can be used with a variety
of indices. In Section 4 we present implementations based
on the Hilbert curve and on an R-tree variant. Note that the
result is approximate; in our example the true NN is p3. We
show experimentally that the approximation error is low.

We also propose a method for finding the exact NN. In a
pre-processing phase, the server computes the Voronoi dia-
gram for the POIs (see Figure 3.b). Each POI pi is assigned
to its Voronoi cell; by definition, pi is the NN of any point
within that cell. The server superimposes a regular grid of
arbitrary granularity on top of the Voronoi diagram. Each
grid cell stores information about the Voronoi cells inter-
secting it. For example D1 stores {p4}, whereas C3 stores
{p3, p4}. Upon asking a query, the client first retrieves the
granularity of the grid, and calculates the grid cell that con-
tains him (i.e., C2). Then, he employs PIR to request the
contents of C2. He receives {p3, p4} (encrypted) and calcu-
lates p3 as his exact NN. The method is described in Sec-
tion 5. Note that the cost is typically higher compared to
approximate NN.

PIR has been criticized of being too costly to be applied
in practice. [24] showed that the computational time of
PIR may be longer than the time required for an oblivious
transfer of the database. [24] assumes that the server agrees
to surrender the entire database to the client. In practice,
this is rarely the case, since the database is a valuable as-
set for the server, who charges the client, either directly or
indirectly (e.g., advertisements), based on the actual usage.
Moreover, most queries do not need to retrieve the entire
database. Still, the CPU cost of PIR can be high, since it
involves numerous multiplications of large numbers. Never-
theless, we show that much of the computation is redundant.
In Section 6 we develop a query optimizer which employs
data mining techniques to identify such redundancy. The
resulting execution plan is up to 40% cheaper in terms of
CPU cost. Moreover, we show that the required computa-
tions are easily parallelized.

Summarizing, our contributions are:

1. We propose a novel framework for private location-
dependent queries, which uses PIR protocols and elim-
inates the need for any trusted third party. Our work is
the first to provide provable privacy guarantees against
correlation attacks.

122

2. We develop algorithms for approximate and exact pri-
vate nearest neighbor search. We utilize data mining
techniques to optimize query execution.

3. We show experimentally that the cost is reasonable;
hence our methods are applicable in practice.

2. RELATED WORK
Most existing approaches for private location-dependent

queries follow the user-anonymizer-LBS framework of Fig-
ure 1. The anonymizer sends to the LBS a Cloaking Region
(CR) instead of the actual user location; this procedure is
called cloaking. Ref. [11] combines spatial with temporal
cloaking. Each query q specifies a temporal interval δt that
the corresponding user u is willing to wait. If within δt,
K − 1 other clients in the vicinity of u also issue queries,
all these queries are combined in a single CR; otherwise, q
is rejected. In Casper [20], the anonymizer maintains the
locations of the clients using a pyramid data structure, sim-
ilar to a Quad-tree. Assume u asks a query and let c be the
lowest-level cell of the Quad-tree where u lies. If c contains
enough users (i.e., |c| ≥ K), c becomes the CR. Otherwise,
the horizontal ch and vertical cv neighbors of c are retrieved.
If |c ∪ ch| ≥ K or |c ∪ cv| ≥ K, the corresponding union of
cells becomes the CR; otherwise, the anonymizer retrieves
the parent of c and repeats this process recursively. In-
terval Cloak [14] is similar to Casper in terms of both the
data structure used by the anonymizer (a Quad-tree), and
the cloaking algorithm. The main difference is that Interval
Cloak does not consider neighboring cells at the same level
when determining the CR, but ascends directly to the an-
cestor level. Casper and Interval Cloak guarantee privacy
only for uniform distribution of user locations.

Hilbert Cloak [17] uses the Hilbert space filling curve to
map the 2-D space into 1-D values. These values are then
indexed by an annotated B+-tree. The algorithm partitions
the 1-D sorted list into groups of K users (the last group
may have up to 2K − 1 users). For querying user u the
algorithm finds the group to which u belongs, and returns
the minimum bounding rectangle of the group as the CR.
The same CR is returned for any user in a given group.
Hilbert Cloak guarantees privacy for any distribution of user
locations.

The previous approaches assume a static snapshot of user
locations and do not consider correlation attacks (e.g., his-
tory of user movement). In [5], correlation attacks are han-
dled as follows: At the initial timestamp t0, cloaking region
CR0 is generated, which encloses a set AS of at least K
users. At a subsequent timestamp ti, the algorithm com-
putes a new anonymizing region CRi that encloses the same
users in AS, but contains their locations at timestamp ti.
There are two drawbacks: (i) As users move, the resulting
CR may grow very large, leading to prohibitive query cost.
(ii) If a user in AS disconnects from the service, the query
must be dropped. Furthermore, in [5] it is assumed that
there are no malicious users.

Privacy in LBS has also been studied in the context of
related problems. In [3], the CR is a closed region around
the query point, which is independent of the number of users
inside. Given CR, the LBS returns the probability that each
candidate result satisfies the query based on its location with
respect to the CR. Ref. [6], on the other hand, eliminates
the anonymizer by organizing users in a Peer-to-Peer sys-
tem. The querying user u searches his neighborhood until

he finds K − 1 other peers, which are used to construct the
CR. However, u tends to be close to the center of the CR;
therefore an attacker can identify u with high probability.
Ref. [12] also uses a Peer-to-Peer system to support dis-
tributed anonymization; although a centralized anonymizer
is not required, all users must trust each other. More rele-
vant to our work is the approach of [18]: In a preprocessing
phase, a trusted third party transforms (using 2-D to 1-D
mapping) and encrypts the database. The database is then
uploaded to the LBS, which does not know the decryption
key. All users possess tamper-resistant devices which store
the decryption key, but they do not know the key them-
selves. Users send encrypted queries to the LBS and decrypt
the answers to extract the results. The method assumes that
none of the tamper-resistant devices is compromised. If this
condition is violated, the privacy of all users is threatened.

Our work builds on the theoretical results of Private In-
formation Retrieval (PIR), which is defined as follows: a
server S holds a database with n bits, X = (X1 . . . Xn). A
user u has a particular index i and wishes to retrieve the
value of Xi, without disclosing to S the value of i. The PIR
concept was introduced in [4] in an information theoretic
setting, requiring that even if S had infinite computational
power, it could not find i. It is proven in [4] that in any solu-
tion with a single server, u must receive the entire database
(i.e., Θ(n) cost). Nevertheless, in practice, it is sufficient
to ensure that S cannot find i with polynomial-time com-
putations; this problem is known as Computational PIR.
[19] showed that the communication cost for a single server
is Θ(nε), where ε is an arbitrarily small positive constant.
Our work employs Computational PIR.

Several approaches employ cryptographic techniques to
privately answer NN queries over relational data. Most of
them are based on some version of the secure multiparty
computation problem [13]. Let two parties A and B hold ob-
jects a and b, respectively. They want to compute a function
f(a, b) without A learning anything about b and vice versa.
They encrypt their objects using random keys and follow a
protocol, which results into two“shares” SA and SB given to
A and B, respectively. By combining their shares, they com-
pute the value of f . In contrast to our problem (which hides
the querying user from the LBS), existing NN techniques as-
sume that the query is public, whereas the database is parti-
tioned into several servers, neither of which wants to reveal
their data to the others. Ref. [25] assumes vertically parti-
tioned data and uses secure multiparty computation to im-
plement a private version of Fagin’s [8] algorithm. Ref. [23]
follows a similar approach, but data is horizontally parti-
tioned among the servers. The computation cost is O(n2)
and may be prohibitive in practice. Ref. [1] also assumes
horizontally partitioned data, but focuses on top-k queries.

More relevant to our problem is the work of [16] which
uses PIR to compute the NN of a query point. The server
does not learn the query point and the user does not learn
anything more than the NN. To achieve this, the method
computes private approximations of the Euclidean distance
by adapting an algorithm [9] that approximates the Ham-
ming distance in {0, 1}d space (d is the dimensionality). The

cost of [16] is Õ(n2) for the exact NN and Õ(
√

n) for an ap-
proximation through sampling. The paper is mostly of the-
oretical interest, since the Õ notation hides polylogarithmic
factors that may affect the cost; the authors do not provide
any experimental evaluation of the algorithms.

123

Symbol Description
k Modulus Bits

q1, q2 k/2-bit primes
N = q1 · q2 Modulus

n Number of Data Objects
m Object Size (bits)

t = �√n� PIR Matrix Dimension
M1:t,1:t[1 : m] PIR Matrix (binary array)

y1:t, array of k-bit numbers PIR Query
z1:t[1 : m], array of k-bit numbers PIR Reply

Table 1: Summary of notations

3. PIR FRAMEWORK FOR LBS
This section provides an overview of the proposed PIR

framework: Section 3.1 outlines an existing PIR protocol
for binary data, which we use as a building block in our
techniques. Section 3.2 discusses the advantages of our PIR
framework, compared to existing spatial cloaking techniques.

3.1 Computational PIR Protocol
Computational PIR [19] relies on the Quadratic Residuos-

ity Assumption (QRA), which states that it is computation-
ally hard to find the quadratic residues in modulo arithmetic
of a large composite number N = q1 · q2, where q1, q2 are
large primes (see Table 1 for a summary of notations).

Define

Z
∗
N = {x ∈ ZN |gcd(N, x) = 1}, (1)

the set of numbers in ZN which are prime with N (gcd is
the greatest common divisor). Then the set of quadratic
residues (QR) modulo N is defined as:

QR = {y ∈ Z
∗
N |∃x ∈ Z

∗
N : y = x2 mod N}. (2)

The complement of QR with respect to Z
∗
N constitutes the

set of quadratic non-residues (QNR).
Let

Z
+1
N = {y ∈ Z

∗
N |

“ y

N

”
= 1}, (3)

where
`

y
N

´
denotes the Jacobi symbol [10]. Then, exactly

half of the numbers in Z
+1
N are in QR, while the other half

are in QNR. According to QRA, for y ∈ Z
+1
N , it is computa-

tionally intractable to decide whether y ∈ QR or y ∈ QNR.
Formally, define the quadratic residuosity predicate QN such
that:

QN (y) = 0 ⇔ y ∈ QR (4)

Then, if q1 and q2 are k
2
-bit primes, for every constant c

and any function C(y) computable in polynomial time, there
exists k0 such that

∀k > k0, Pr
y∈Z

+1
N

[C(y) = QN(y)] <
1

2
+

1

kc
(5)

Hence, the probability of distinguishing between a QR and
a QNR is negligible for large-enough k.

Let t = 	√n
 and consider that the database X is or-
ganized as a square t × t matrix M (the matrix is padded
with extra entries if n is not a perfect square). Let Ma,b be
the matrix element corresponding to Xi that is requested
by the user u. u randomly generates modulus N (similar to
a public key in asymmetric cryptography), and sends it to
the server, together with query message y = [y1 . . . yt], such
that yb ∈ QNR, and ∀j �= b, yj ∈ QR.

X1

1 2 3 4

4

3

2

1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

X14

X15

X16

M a

b
y1 y2 y3 y4
QR QR QNR QR

Input

z1

z2

z3

z4

Output

i=10 a=2, b=3

z2 QR X10=0

z2 QNR X10=1

y1, y2, y3, y4

z1, z2, z3, z4

S
u

Figure 4: PIR example. u requests X10

The server computes for every row r of M the value

zr =
tY

j=1

wr,j (6)

where wr,j = y2
j if Mr,j = 0, or yj otherwise1. The server

returns z = [z1 . . . zt]. Based on the Euler criterion, u com-
putes the following formula:„

z
q1−1

2
a = 1 mod q1

«
∧

„
z

q2−1
2

a = 1 mod q2

«
(7)

If Equation 7 is true, then za ∈ QR else za ∈ QNR. Since u
knows the factorization of N , Equation 7 can be efficiently
computed using the Legendre symbol [10]. The user de-
termines the value of Ma,b as follows: If za ∈ QR then
Ma,b = 0, else Ma,b = 1.

Example 1. Figure 4 shows an example, where n = 16.
u requests X10, which corresponds to M2,3. Therefore, u
generates a message y = [y1, y2, y3, y4], where y1, y2, y4 ∈
QR and y3 ∈ QNR. The server replies with the message
z = [z1, z2, z3, z4]. If z2 ∈ QR then u concludes that X10 =
0, else X10 = 1.

The protocol requires O(n) multiplications at the server,
and O(

√
n) communication cost. The latter can be reduced

to O(nε), 0 < ε < 1/2, by applying the method recursively
[19]. Although the recursive variation is asymptotically bet-
ter than the basic one, our experiments revealed that the
overhead of the recursion is not justified in practice.

The previous protocol retrieves privately one bit of infor-
mation. The same idea can be extended to retrieve an object
pi which is represented as an m-bit binary string. Let D be a
database containing n objects: D = {p1, p2, . . . pn}. Again,
the server generates a matrix M with the difference that each
cell contains an m-bit object. Conceptually, this is equiv-
alent to maintaining m matrices M [1], M [2], . . . M [m], one
for each bit of the objects. Assume that u requests object
pi. Same as the 1-bit case, u sends a message y = [y1 . . . yt].
However, the server applies y to each one of the m matri-
ces, resulting to m answer messages: z[1], z[2], . . . z[m]. u
receives these messages and computes all m bits of pi. The
communication and computational cost increase to O(m

√
n)

and O(m · n), respectively. In the rest of the paper, we use

PIR(pi)

to denote that a user u retrieves privately an object pi from
the server, using the described protocol.

1According to [24] the formula can be simplified as follows:
wr,j = yj if Mr,j = 1, otherwise wr,j = 1

124

3.2 Private Location-dependent Queries
There are two privacy issues in location-dependent queries:

(i) The user must hide his identity (e.g., username, IP ad-
dress, etc). This is orthogonal to our problem and can be
achieved through a widely available anonymous web brows-
ing service (that service does not learn the location of u).
(ii) The user must hide his location. Similar to previous
research on spatial K-anonymity (see Section 2), our PIR
framework focuses on this issue. The advantages of our ap-
proach are:

PIR does not disclose any spatial information. As
opposed to CR-based methods (which only perturb loca-
tion, but still disclose the CR), no location information is
disclosed. Instead, the data (i.e., POIs) are retrieved based
on object index, by employing the provably private PIR pro-
tocol. This approach prevents any type of attack based on
user location. In Sections 4 and 5, we develop methods to
find the NN of a user with exactly one PIR request, irre-
spective of his location.

PIR protects against correlation attacks. Assume
that u asks a continuous query as he moves. Existing meth-
ods generate one cloaking region CRi per location, but all
CRi will include u. By intersecting the set of users in all
CRi, an attacker can identify u with high probability; this
is called correlation attack. Note that this attack is possi-
ble because the CR reveals spatial information. Since the
PIR framework does not reveal any spatial information, u is
protected against correlation attacks.

PIR reduces significantly the identification prob-
ability. Let U be the set of all possible users (e.g., all mo-
bile phone users within a country); |U | is typically a large
number (i.e., in the order of millions). From the server’s
point of view, the PIR request may have originated from
any ui ∈ U . Therefore, the probability to identify u as
the querying user is 1/|U |. In contrast, K-anonymity tech-
niques require a subset of users U ′ ⊂ U to subscribe to the
anonymization service; typically |U ′| � |U |. Moreover, only
K users are included in a cloaking region CR, and K � |U ′|,
otherwise CR grows large and the query cost becomes pro-
hibitive (typically K is in the order of 102 [17, 20]). There-
fore, the probability 1/K of identifying u is several orders
of magnitude larger than that of the PIR framework.

PIR does not require any trusted third party, since
privacy is achieved through cryptographic techniques. Ex-
isting techniques, on the other hand, need: (i) An anony-
mizer, which is a single point of attack, and (ii) A large set
U ′ of subscribed users, all of whom must be trustworthy,
since malicious users may collude to reveal the location of
u. Furthermore, users in U ′ must accept the cost of sending
frequent location updates to the anonymizer, even if they do
not ask queries.

PIR reduces the number of disclosed POI. Exist-
ing techniques disclose a large set of candidate POIs (see
Figure 1). Since the database is a valuable asset of the
LBS, users may be charged according to the result size. We
will show (Section 7) that PIR techniques disclose far fewer
POIs.

4. APPROXIMATE NEAREST NEIGHBORS
In this section we describe our ApproxNN method, which

employs the PIR framework to retrieve privately the nearest
point of interest (i.e., NN) of u from a LBS. We show that a

22

24

16

33

6

9

57

6
p1

15
p2

16
p3

22
p4

24
p5

33
p6

36
p7

57
p8

62
p9

36

15
62

u (9)

Hilbert
value

Figure 5: 9 POIs on a 8 × 8 Hilbert curve

good approximation of the NN can be found with only one
PIR request. For simplicity, in Section 4.1 we describe our
method using the 1-D Hilbert ordering. In Section 4.2 we
generalize to 2-D partitionings, such as kd-trees and R-trees.

4.1 Approximate NN using Hilbert ordering
The Hilbert space filling curve is a continuous fractal that

maps the 2-D space to 1-D. Let pi be a POI and denote its
Hilbert value as H(pi). The Hilbert ordering of a database
D = {p1, p2, . . . pn} is a list of all objects sorted in ascending
order of their Hilbert values. Figure 5 shows an example
database with 9 POIs D = {p1, . . . p9}, where H(p1) = 6,
H(p2) = 15, etc. The granularity of the Hilbert curve is
8×8. The granularity does not affect the cost of our method,
therefore it can be arbitrarily fine.

If two POIs are close in the 2-D space, they are likely to
be close in the Hilbert ordering, as well [21]. Therefore, an
approximation of the NN of u is the POI pi whose Hilbert
value H(pi) is closest to H(u). Since the POIs are sorted on
their Hilbert value, we can use binary search to compute the
approximate NN in O(log n) steps. In our example, H(u) =
9, therefore we retrieve p5 → p3 → p2 → p1. The answer
is p1 since its distance from u in the 1-D space is |H(p1) −
H(u)| = |6 − 9| = 3, which is the smallest among all POIs.
Note that the answer is approximate; the true NN is p2.

There are two problems with this approach: First, since
the search must not reveal any information, O(log n) costly
private requests for PIR(pi) must be performed. Second, a
side effect of the PIR protocol is that each PIR(pi) retrieves
not one, but

√
n POIs. Recall the example of Figure 4,

where u is interested in X10. The server returns z1, z2, z3, z4,
from which u can compute the entire column 3 of M , i.e.,
X9, X10, X11, X12. Consequently, the binary search will re-
trieve O(

√
n log n) POIs, which represent a large fraction of

the database.

p1 p4 p7
p2 p5 p8
p3 p6 p9

1
2
3

1 2 316 33 62

22 24 33
p4 p5 p6

6 15 16
p1 p2 p3

36 57 62
p7 p8 p9

Mroot

Su=9

Send root

PIR(p1, p2, p3)
p1, p2, p3

(a) 3-way B+-tree (b) Matrix M (c) Protocol

u(9)

Figure 6: Approximate NN using Hilbert

Observe, however, that each PIR request is intuitively
analogous to a “page access” on a disk. Therefore, the POIs
can be arranged in a B+-tree, where each node contains at
most 	√n
 POIs. The B+-tree for our running example is
shown in Figure 6.a; since there are 9 POIs, the capacity
of each node is 3. Each entry in the root has a key and a
pointer to a leaf. All Hilbert values in a leaf are less or equal

125

Approximate NN Protocol
User u: Initiate query
Server: Send root node
User u: Let b be the column that includes u

y = [y1 : y√n], yb ∈ QNR, and ∀j �= b, yj ∈ QR
Send y

Server: Send z[1 : m] = [z1 : z√n][1 : m]
User u: Calculate distance to all POIs in column b

Return the approximate NN

Figure 7: Protocol for approximate NN

to the corresponding root key. Each leaf node corresponds
to one column of the PIR matrix M (see Figure 6.b). Note
that M stores the POIs without their Hilbert value. With-
out loss of generality, we assume that each POI consists of its
coordinates: pi = (xi, yi); more complex objects are easily
supported. During query processing the server sends to u the
root node (i.e., 〈16, 33, 62〉). In the example H(u) = 9 ≤ 16,
therefore u must retrieve privately the first column of M .
This is done with one request PIR({p1, p2, p3}). Next, u
computes his NN from the set {p1, p2, p3}. The answer is p2,
which happens to be the exact NN. Note that by retrieving
several POIs in the neighborhood of u, the approximation
error decreases; however, the method remains approximate.

Observe that the height of the tree is always log√
n n = 2.

The fact that u asks for the root node does not reveal any
information to the server, since all queries require the root.
Therefore, the server sends the root, which contains only
Hilbert values but no POIs, in a low-cost plain format (i.e.,
does not use PIR). Consequently, the NN is computed with
only one PIR request (i.e., one column of M). Figure 7
shows the protocol. The communication cost is O(

√
n) and

u retrieves up to
√

n POIs; for instance, if the LBS contains
106 POIs, u retrieves 0.1% of them. In Section 7 we show
that existing K-anonymity methods retrieve more POIs.

4.2 Generalization to 2-D partitionings
The previous method can be extended to 2-D partition-

ings. The only requirement is that data must be partitioned
into at most

√
n buckets, each containing up to

√
n POIs.

Consider the case of the kd-tree [7]. The original insertion al-
gorithm partitions the space either horizontally or vertically
such that every partition contains one point. We modify the
algorithm as follows: Let n′ be the number of POIs in the
current partition (initially n′ = n), and let g be the number
of remaining available partitions (initially, there are

√
n).

We allow splits that create partitions e1 and e2 such that
|e1| + |e2| = n′ and

	|e1|/
√

n
 + 	|e2|/
√

n
 ≤ g. (8)

Subsequently, the algorithm is recursively applied to e1 and
e2, with 	|e1|/√n
 and 	|e2|/√n
 remaining partitions,
respectively. Out of the eligible splits, we choose the most
balanced one.

In the example of Figure 8.a there are n = 9 POIs, and 3
available buckets. The points are split into regions A, which
contains |A| = 3 POIs, and BC, which contains |BC| = 6
POIs. BC is further split into B (where |B| = 3) and C
(where |C| = 3). The resulting kd-tree has 2 levels. The
root contains regions A, B, C and the leaf level contains 3
nodes with 3 POIs each, which are arranged in a PIR matrix
M . Query processing follows the protocol of Figure 7. Since
u is in region C, column 3 is retrieved; the NN is p2.

A B C

p6 p8 p9p4 p5 p7 p3 p2 p1

root

(a) kd-Tree

A B C

p3 p2 p6p4 p5 p7 p1 p8 p9

root

p4
p5

p3 p6

p1

u

p8

p7

p2

p9

A

B

C

p4 p5

p3
p6

p1

u

p8

p7

p2

p9

A

B

C

1

2

(b) R-Tree

Figure 8: 2-D approximate NN

As another case study, consider the R-tree. Originally,
each node would store between f/2 and f objects, where
f is the node capacity; internal nodes contain minimum
bounding rectangles (MBR) which enclose the objects of
their children. We modify the R-tree construction algorithm
such that there are 2 levels and the root contains no more
than

√
n MBRs. Let n′ be the number of POIs in the cur-

rent partition. The original algorithm checks all possible
partitionings with |e1| + |e2| = n′ POIs, along the x and y-
axis. It selects the best one (e.g., lowest total area, or total
perimeter, etc) and continues recursively. We modify this
algorithm to validate a split only if Equation 8 is satisfied.
Figure 8.b shows an example where MBRs A, B, C contain
3 POIs each. The leaf nodes are arranged in a PIR matrix
M and query processing follows the protocol of Figure 7. u
is closer to MBR B, therefore column 2 is retrieved and the
NN is p2.

Both 2-D methods return the approximate NN by retriev-
ing

√
n POIs. The communication cost is O(

√
n). There-

fore, in terms of cost, they are the same as the Hilbert-
based method. The only difference is the approximation
error, which depends on the characteristics of the dataset
(e.g., density, skew). The case studies of the kd-tree and
R-tree demonstrate a general method for accommodating
any partitioning in our PIR framework. The choice of the
appropriate partitioning for a specific dataset is outside the
scope of this paper. Note that, all variations of ApproxNN
can also return the approximate ith-Nearest Neighbor, where
1 ≤ i ≤ √

n.

5. EXACT NEAREST NEIGHBORS
In this section we present a method, called ExactNN,

which returns the POI that is the exact nearest neighbor
of user u. In a preprocessing phase, ExactNN computes the
Voronoi tessellation [7] of the set of POIs (see Figure 9). Ev-
ery Voronoi cell contains one POI. By definition, the NN of
any point within a Voronoi cell is the POI enclosed in that
cell. ExactNN superimposes a regular G ×G grid on top of
the Voronoi diagram. Then, for every cell c of the grid, it
determines all Voronoi cells that intersect it, and adds the
corresponding POIs to c. Hence, cell c contains all poten-
tial NNs of every location inside it2. For example, Figure 9
depicts a 4 × 4 grid, where cell A1 contains {p2}, cell B2
contains {p2, p3}, etc. During query processing, u learns the
granularity of the grid; therefore he can calculate the cell
that encloses his location (i.e., D2 in our example). Next, u

2ExactNN can be extended to support range queries, if each
grid cell c stores the set of POIs it encloses

126

p1

p2

p3 p4

u

A B C D

4

3

2

1

y1 y2 y3 y4Input

z1

z2

z3

z4

Output

A1: p2, --, --
A2: p2, --, --
A3: p1, p2, p3

...
C1: p2, p3, p4

...
D1: p4, --, --
D2: p4, --, --
D3: p4, --, --
D4: p4, --, --

16
cells

Pmax = 3

Figure 9: Exact nearest neighbor

issues a private request PIR(D2); from the contents of D2
u finds his NN (i.e., p4).

In contrast to ApproxNN methods, the objects of the PIR
matrix M of ExactNN are not the POIs. Instead, each
object in M corresponds to the contents of an entire grid
cell c. For instance, our example contains 4 POIs (i.e.,
p1, p2, p3, p4), but M contains 16 objects, since there are 16
cells in the grid. In the previous section, n (i.e., the number
of objects in M) was the same as the number of POIs. To
avoid confusion, n still refers to the number of objects in M
(i.e., n = 16 in the example) and we use |POI | to denote
the number of POIs.

All objects in M must have the same number of bits, oth-
erwise the server may infer the requested cell based on the
amount of bits transferred. Let Pmax be the maximum num-
ber of POIs per grid cell. If a cell has fewer than Pmax POIs,
the server adds dummy POIs as placeholders. In our exam-
ple, Pmax = 3 because of cells A3 and C1. Therefore, all
other cells are padded with dummy POIs. For instance, cell
A1 becomes {p2,−,−}. Recall from Table 1 that m denotes
the number of bits of each object in M . Since there are
Pmax POIs in each grid cell, m = |pi| · Pmax, where |pi| is
the number of bits in the representation of each POI.

Since the number of objects in M is n = G2, depending on
the granularity of the grid, n may be larger or smaller than
the number of POIs. Pmax (hence m, too), also depends on
G. Therefore the communication and computational cost of
ExactNN depends on G. In Section 5.1 we discuss how to
select an appropriate value for G.

Exact NN Protocol
User u: Initiate query
Server: Send grid granularity G
User u: Let b be the column that includes u

y = [y1 : y√n], yb ∈ QNR, and ∀j �= b, yj ∈ QR
Send y

Server: Send z[1 : m] = [z1 : z√n][1 : m]
User u: Let a be the row that includes u

Discard dummy POIs in za

Calculate distance to real POIs in za

Return the exact NN

Figure 10: Protocol for exact NN

The protocol for ExactNN is shown in Figure 10. It is
similar to the ApproxNN protocol, with one difference: Let
〈a, b〉 be the cell that contains u, where a is the row and b the
column. u issues a private request PIR(〈a, b〉). Recall that,
in addition to 〈a, b〉, the byproduct of this request are the
POIs of the entire column b. ApproxNN would utilize the
extra POIs to improve the approximation of the result. On
the other hand, the extra results are useless for ExactNN,

since the exact NN is always in 〈a, b〉. A possible concern is
that ExactNN reveals to the user G ·Pmax POIs, which may
be more than those revealed by ApproxNN. In practice, how-
ever, this is not a problem because column b includes many
duplicates. For example, cells D1, D2, D3, D4 in Figure 9
all contain the same POI p4; therefore the request PIR(D2)
reveals only p4 to the user. In Section 6.2 we discuss an
optimization which reduces further the number of revealed
POIs.

5.1 Grid Granularity
For a particular choice of grid granularity G, the PIR pro-

tocol overhead of ExactNN is k · G + k · m · G communica-
tion3 (the first term corresponds to request y; the second
to reply z), and O(m · G2) server computation (recall that
m = |pi| · Pmax). By increasing G (i.e., finer grid), Pmax

may decrease or remain the same, depending on the data
characteristics. Figure 11 shows the general form of the
communication cost, as a function of G. Initially the cost
decreases fast because Pmax decreases, but later the cost in-
creases again at finer granularity, as Pmax reaches a lower
bound (either 1, or the maximum of duplicate POIs). We
could select the value of G that minimizes the communica-
tion cost, but there is a tradeoff, as the CPU cost increases
quadratically to G. We could include the CPU cost in the
graph and find the granularity that minimizes the total cost
(expressed as response time). This would require the exact
CPU speed and network bandwidth; the latter is problem-
atic, since the bandwidth of each user differs. A good trade-
off is to select the granularity Gopt near the point where
the rate of decrease of the communication cost slows down.
That is the point where the slope of the tangent of the cost
function becomes −1.

G

C
om

m
un

ic
at

io
n

co
st

Gopt

Minimum
communication cost

Optimal overall cost

Tangent
Slope = -1

Figure 11: Finding the optimal grid granularity

In practice, since Pmax is not known in advance, the graph
of Figure 11 is generated as follows: First, we compute the
Voronoi diagram of the dataset. Then, we select a set of
values Gi using random sampling. For each of these values,
we superimpose the resulting grid on the Voronoi diagram,
and calculate Pmax by counting the POIs in each cell. The
communication cost is Ci(Gi) = k ·Gi + k ·m ·Gi . Finally,
we apply curve fitting on the 〈Gi, Ci(Gi)〉 points to obtain
the complete curve.

6. OPTIMIZATIONS
This section presents optimizations that are applicable to

the previous methods. By employing these optimizations,
the communication cost is reduced by as much as 90%,
whereas the computational cost is reduced by up to 40%
for a single CPU and more for multiple CPUs.

3Recall that k is the number of bits in the modulus

127

X1

1

n

.

.

.

2

1

X2

...

Xn

y1

z1

z2

.

.

.

zn

(a) M: n 1

X1

1 2 ... n

1 X2 ... Xn

y1 y2 ... yn

z1

(b) M: 1 n

X1

1 2 ... s

r

.

.

.

1

.

.

.

Xr

Xr+1

X2r

...

...

Xn-r+1

Xn

y1 y2 ... ys

z1

.

.

.

zr

.

.

.

.

.

.

…
…

(c) M: r s

Figure 12: Rectangular PIR matrix M

6.1 Compression
The size of z (i.e., the server’s answer) is k·m·r bits, where

r is the number of rows in the PIR matrix M . However,
there is a lot of redundancy inside z. Consider the example
of Figure 9. Cells A4, B4, C4, D4 have at least one dummy
object each. The same holds for A2, B2, C2, D2. Assum-
ing that the dummy object corresponds to bits mi . . . mj ,
then z4[mi : mj] and z2[mi : mj] will be the same. Since
each one of these results is k bits, the redundancy is signif-
icant. In our implementation we use standard compression
techniques to compress the result. Our experiments showed
that, in many cases, compression may save up to 90% of the
communication cost.

6.2 Rectangular vs. Square PIR Matrix
In the previous sections the PIR matrix M is assumed

to be square. However, M can have any rectangular shape
[19] with r rows and s columns (see Figure 12). The shape
of M does not affect the CPU cost, since the number of
multiplications does not change. On the other hand, the
communication cost becomes: C(r, s) = k · s + k · m · r,
where the first part is the size of the user’s request y1..s and
the second part is the size of the server’s answer z1..r. C(r, s)
is minimized for:

r =

‰r
n

m

ı
, s =

ln

r

m
(9)

If each object has 1 bit (i.e., m = 1), C(r, s) is minimized for
r = s =

√
n (i.e., square matrix). In our ExactNN method,

on the other hand, m � 1; therefore, the communication
cost is minimized for r smaller than s. Rectangular matri-
ces have an additional benefit: they can reduce the number
of POIs that the user learns. Consider the example of Fig-
ure 12.a, where r = n and s = 1. The server returns z1..n,
therefore, the user learns n POIs. On the other hand, in Fig-
ure 12.b r = 1 and the server returns only 1 POI. By using
rectangular M in the ExactNN algorithm, the user learns
up to r · Pmax POIs. This is much less than the

√
n · Pmax

POIs that a square matrix would reveal.
Rectangular M could also reduce the communication cost

in the ApproxNN methods, since m � 1. However, there is
a drawback: Recall that the ApproxNN methods organize
POIs in an index, whose root node is always sent to the
user. The size of the root is equal to the number of columns
s. In the extreme case (i.e., for large enough m), Equation 9
results in s ≈ n, therefore the root node reveals the entire
database to the user. The minimum number of revealed
POIs (i.e., O(

√
n)) is achieved for square M . In our im-

plementation we use a square matrix M for the ApproxNN
methods.

0 0 1 1 1 1

01 0 1 1 1

0 1 1 1 0 1

0 0 1 0 1 1

0 1 1 0 0 0

0 1 1 0 0 1

y1 y2 y3 y4
Input

z1

z2

z3

z4

Output1 2 3 4 5 6

1

2

3

4

5

6

z5

z6

y5 y6

y1 y2 y3 y4 y6y5

z1 z2 z3 z4 z6z5

y2 y3 y3 y5 y6

Execution plan

Figure 13: Pre-compiled optimized execution plan

6.3 Avoiding Redundant Multiplications
From Equation 6 (Section 3), it is clear that a PIR request

requires m ·n multiplications with yi ∈ y. Each yi is a k-bit
number; to ensure that factorization is hard, k needs to be
in the order of hundreds. Therefore, the CPU cost of the
multiplications is high. Nevertheless, many multiplications
are redundant, since they are repeated several times. In this
section we propose an optimization technique, which em-
ploys data mining to avoid redundant multiplications. Al-
though in this paper we only evaluate the effectiveness of
the proposed optimization for the location privacy problem,
our technique is general and can be used in other PIR ap-
plications.

By using the simplification of [24] (Section 3), in each row
of the PIR matrix we only need to consider the ‘1’ bits.
For example, in Figure 13, the result for row 1 is: z1 =
y3·y4·y5·y6. Observe that the partial product y356 = y3·y5·y6

appears in rows 1, 2 and 4. If y356 is computed once, it can
be reused to compute z1 = y356 · y4, z2 = y356 · y1 and
z4 = y356, thus saving many multiplications. The same idea
applies to y23, which appears in rows 3, 5 and 6.

Intuitively, the previous idea can be implemented as a
“cache”. When a new PIR request arrives, the server starts
processing it and stores the partial results in the cache. If a
partial product is repeated, the corresponding partial result
is retrieved from the cache. Unfortunately, the number of
possible partial products is 2s, where s is the number of
columns in M . s can be in the order of thousands, therefore
the method is prohibitively expensive for on-line use.

Observe that, although the result depends on the input y,
the set of multiplications depends only on the server’s data
and is the same for any PIR request. Therefore, similarly
to pre-compiled query plans in databases, we generate in
an off-line phase an optimized execution plan that avoids
redundant multiplications. Then, during query processing,
the server routes the input y through the operators of the
plan, in order to compute fast the result z. The execution
plan for our running example is shown in Figure 13.

In the off-line phase, we employ data mining techniques
to identify redundant partial products. Following the data
mining terminology, each item corresponds to one column of
matrix M , whereas each transaction corresponds to a row of
M . For example, row 1 in Figure 13 corresponds to trans-
action T1 = 001111. A ‘1’ bit means that the corresponding
item belongs to the transaction. There are r · m transac-
tions with s items each. An itemset corresponds to a partial
product. In order to avoid many multiplications, we must
identify frequent and long itemsets. We use the Apriori al-
gorithm [2]. Initially, Apriori considers all itemsets with one
item and prunes those that do not appear in at least fmin

transactions. Then, it considers all possible combinations

128

with two of the remaining items and continues recursively
with itemsets containing more items.

Accessing the execution plan incurs an overhead on query
execution. Therefore, the frequency and length of the dis-
covered itemsets must be large enough such that the sav-
ings from the multiplications are more than the overhead.
The cut-off values for frequency and length can be estimated
by measuring the actual multiplication time of the partic-
ular CPU. Moreover, by decreasing fmin the running time
of Apriori increases. Therefore, fmin must be selected such
that Apriori finishes within a reasonable time. Note that
the identification of frequent itemsets is a costly operation,
therefore it is not appropriate for databases with frequent
updates. However, in many LBSs updates are infrequent
(e.g., hospitals change rarely). Similar to data warehouses,
our method is appropriate for batch periodic updates (e.g.,
once per night).

Let IT = (it1, it2, . . .) be the list of frequent itemsets
sorted in descending order of itemset length. In the exam-
ple of Figure 13, IT = (001011, 011000) which corresponds
to y356 and y23. We use the following greedy algorithm to
build the execution plan for row zi: Let Ti be the transaction
that corresponds to zi. We traverse the list IT and select
the first (i.e., longest) itemset itj which appears in Ti. The
rationale for this heuristic is that longer itemsets correspond
to longer partial products, hence they are preferred for their
higher potential in multiplication savings. We include itj in
the execution plan of Ti, remove from Ti all items in itj (this
step is necessary in order to ensure correctness) and repeat
the process for the rest of itemsets in IT . The pseudocode
is shown in Figure 14 (lines 3 and 5 use bitwise operations
for performance reasons). The same process is repeated for
all rows of M .

BuildExecutionPlan
Input: transaction Ti (from row i of M),

list of frequent itemsets IT
1. ExecP lani = ∅
2. foreach itemset itj ∈ IT
3. if (¬Ti ∧ itj = 0) /*itj is part of Ti*/
4. ExecP lani = ExecP lani ∪ {itj}
5. Ti = ¬itj ∧ Ti

6. if (Ti = 0) /*no more ‘1’s in Ti*/
7. break
8. if (Ti �= 0)
9. ExecP lani = ExecP lani ∪ {Ti}
10. output ExecP lani

Figure 14: Execution plan for one row

Figure 15 shows the architecture of the PIR optimizer.
Once a query is received, the server checks for each row
the associated execution plan ExecP lani: for each item-
set it ∈ ExecP lani, the server checks whether the partial
product of it has already been tabulated in table PROD;
if so, it is used directly, otherwise, the server computes the
product and stores it in PROD to be used for subsequent
rows. The overhead of this technique consists of the lookup
in the PROD table, which can be efficiently manipulated as
a hash table, having as key the signature of it. The experi-
ments show that, by using the optimized execution plan, the
computation cost is reduced by up to 40%.

6.4 Parallelism
The PIR framework involves a large number of multiplica-

tions in a regular pattern. Consequently, the computations
can be easily parallelized. The parallel computing infras-

Figure 15: PIR Optimizer Architecture

tructure can vary from multicore CPU, to multi-CPU to
computer cluster. Matrix M is partitioned horizontally in
as many partitions as the available CPUs, and each CPU re-
ceives the corresponding partition in an off-line phase. Dur-
ing query processing, all CPUs receive the input vector y and
calculate their part of the result. Communication is mini-
mal (only the input and output) since each partition does
not depend on the others. Therefore, parallel implementa-
tions achieve almost linear speedup. In our experiments we
used up to 8 CPUs resulting to up to 7 times faster execution
time.

7. EXPERIMENTAL EVALUATION
We developed a C++ prototype of the proposed PIR frame-

work. We tested the methods using both synthetic (uniform
and Gaussian) and real (Sequoia4, 65K POIs in California)
datasets. Our experimental testbed consisted of a Pentium
4 3.0GHz machine with 2GB of RAM, running Linux OS.
We employed the GMP5 library for operations with large
integers (required by PIR), and the zlib6 library for data
compression. In our experiments, we measured the com-
munication cost, as well as the computational cost at the
server, which is the dominating factor for PIR. The CPU
time includes the compression of the result before returning
it to the client (which only accounts for a small fraction of
the total CPU time). We also measured the computational
cost at the client. We varied k (i.e., modulus bits) between
256 and 1280, and the number of POIs between 10, 000 and
100, 000. Each POI consists of its (x, y) coordinates (i.e., 64
bits).

7.1 1D and 2D Approximate NN
First we compare the approximate NN methods. 1D refers

to the Hilbert variant, whereas 2D refers to the R-tree vari-
ant. Figure 16.a shows the server CPU time with varying k
for the real Sequoia set. Recall that, for approximate meth-
ods, n is the number of POIs. The CPU time is very sim-
ilar for both 1DApprox and 2DApprox, since in both cases
it mainly depends on the data size. CPU time varies ap-
proximately as k

√
k, which is the average complexity of the

multiplication algorithms implemented in GMP.
Figure 16.b, shows the communication cost, which is linear

to k. Both methods incur similar cost, since the sets of
elements (i.e., POIs) stored in the PIR matrix are the same
in both cases. The slight difference is due to the distinct
distribution of POIs along rows and columns. For k = 768,
the communication cost is 1MB.

4http://www.rtreeportal.org
5http://gmplib.org/
6http://www.zlib.net

129

 0

 5

 10

 15

 20

 25

 30

 1280 1024 768 512 256

S
er

ve
r

T
im

e
(s

ec
)

Modulus Bits (k)

1DApprox 2DApprox

(a) (b)

 0

 0.5

 1

 1.5

 2

 1280 1024 768 512 256

C
om

m
un

ic
at

io
n

(M
B

yt
es

)

Modulus Bits (k)

Figure 16: Variable k, Sequoia set (62K POI)

 0

 2

 4

 6

 8

 10

 12

100k75k50k25k10k

S
er

ve
r

T
im

e
(s

ec
)

Data Size

1DApprox-Unif 1DApprox-Gauss 2DApprox-Unif 2DApprox-Gauss

(a) (b)

 0

 0.2

 0.4

 0.6

 0.8

 1

100k75k50k25k10k

C
om

m
un

ic
at

io
n

(M
B

yt
es

)

Data Size

Figure 17: Variable data size, k = 768 bits

Figure 17.a shows the CPU time for varying data size
(synthetic sets) and k = 768. The CPU time is linear to
n, since the number of multiplications is proportional to
the number of ‘1’ bits in the data. The communication cost
follows the expected theoretical dependency of

√
n, as shown

in Figure 17.b. Compression is more effective with Gaussian
data, because there are more POIs with nearby (possibly
identical) coordinates, increasing redundancy.

Next, we investigate the approximation error of the pro-
posed techniques. We generate 1000 queries originating at
random locations that follow the POI distribution (this is a
reasonable assumption, since the dataset is likely to corre-
spond to an urban area, for instance). Given query point q,
the returned result r and actual NN p, we express the ap-
proximate NN error as err = (dist(q, r)−dist(q, p))/maxD,
where maxD is the side of the (square) data space.

1e-4

8e-5

6e-5

4e-5

2e-5

SequoiaGauss100kGauss50kUnif100kUnif50k

A
pp

ro
xi

m
at

io
n

E
rr

or

1DApprox
2DApprox

Figure 18: Approximation Error

Figure 18 shows the average error for 1DApprox and 2DAp-
prox. The error is slightly larger for uniform data, as POIs
are scattered in the entire dataspace. For Gaussian data, the
clustering of POIs in the PIR matrix is more effective, lead-
ing to better accuracy. The error decreases when data den-
sity increases, and the average error is always below 0.01% of
the dataspace size. Furthermore, the results revealed that
despite their approximate nature, the methods return the
exact NN for 94% of the queries, whereas the maximum
worst-case error encountered was 1.1% of the dataspace size.

1DApprox and 2DApprox have similar CPU time and

10K 25K 50K 75K 100K
Uniform 20x20 22x22 28x28 32x32 36x36
Gaussian 42x42 61x61 78x78 108x108 122x122
Sequoia 104x104

Table 2: Grid Granularity for ExactNN

 0

 10

 20

 30

 40

 50

 60

 1280 1024 768 512 256

S
er

ve
r

T
im

e
(s

ec
)

Modulus Bits (k)

1DApprox ExactNN

(a) (b)

 0

 1

 2

 3

 1280 1024 768 512 256

C
om

m
un

ic
at

io
n

(M
B

yt
es

)

Modulus Bits (k)

Figure 19: Variable k, Sequoia set (62K POI)

comparable communication cost, since they both follow the
same 2-level tree approach. The choice between the two de-
pends on the characteristics of the data and is outside the
scope of this paper. In the rest of the experiments, we only
consider the 1DApprox method.

7.2 Exact Methods
We evaluate the performance of ExactNN in comparison

with 1DApprox. The grid size of ExactNN was determined
as described in Section 5.1. Table 2 shows the resulting grid
size for each dataset. Note that, for ExactNN we use the
rectangular PIR matrix optimization from Section 6.2. Fig-
ure 19.a depicts the CPU time versus k for the real dataset.
The trend is similar to approximate methods, but the abso-
lute values are higher for ExactNN, due to the larger size of
the PIR matrix (recall that the m value for ExactNN may be
considerably larger than that for 1DApprox). In Section 7.3
we evaluate methods that reduce the CPU time. Figure 19.b
confirms that the communication cost is linear to k.

 0

 10

 20

 30

 40

100k75k50k25k10k

S
er

ve
r

T
im

e
(s

ec
)

Data Size

1DApprox-Unif 1DApprox-Gauss ExactNN-Unif ExactNN-Gauss

(a) (b)

 0

 0.5

 1

 1.5

 2

100k75k50k25k10k

C
om

m
un

ic
at

io
n

(M
B

yt
es

)

Data Size

Figure 20: Variable data size, k = 768 bits

Figure 20.a shows the CPU time versus the data size. Re-
call that n for ExactNN depends on the grid granularity,
and is not equal to the data size. For uniform data, the
number of grid cells (i.e., n value) required to maintain a
constant Pmax grows proportionally with data size, there-
fore the CPU time increases linearly. On the other hand,
for skewed data, in order to maintain a value of m which
provides low communication cost, it may be necessary to
use a finer grid, resulting in increased CPU time. However,
the results show that the CPU time is almost linear to the
number of POI, confirming that the heuristic for choosing
the grid granularity is effective. The good choice of granular-
ity is also reflected in the communication cost (Figure 20.b).
Observe that, for Gaussian data, Pmax (hence m) increases,
and consequently the communication cost increases.

130

7.3 Execution Time Optimizations
In this experiment we evaluate our optimizer7, which em-

ploys data mining (DM) to reduce the CPU cost of PIR at
the server. We run the Apriori algorithm on the real dataset
and retain all frequent itemsets with a support of at least
5%. Figure 21 shows the results: for small k values, the
gain in execution time is less significant, because multipli-
cations are relatively inexpensive. However, as k increases,
the benefit of avoiding redundant multiplications becomes
clear: the CPU time is reduced by up to 41% for 1DApprox,
and 32% for ExactNN.

 0

 10

 20

 30

 1280 1024 768 512 256

S
er

ve
r

T
im

e
(s

ec
)

Modulus Bits (k)

1DApprox 1DApprox-DM ExactNN ExactNN-DM

 0

 10

 20

 30

 40

 50

 60

 1280 1024 768 512 256

S
er

ve
r

T
im

e
(s

ec
)

Modulus Bits (k)

Figure 21: DM Optimization, Sequoia set

The PIR computations are suitable for parallel execution.
We implemented a Message Passing Interface (MPI) version
of the server, and tested it on a Linux cluster with Intel
Xeon 2.8 GHz nodes. In Figure 22, we show the effect of
parallel processing. We vary the number of CPUs from 1
to 8; note that, since each individual CPU is slower than
the one used in the previous experiments, the 1-CPU time
is slightly larger. The speed-up obtained is almost linear
for 1DApprox, where we obtained improvements by a factor
of 7.25 for 8 CPUs. For ExactNN, the speed-up is slightly
lower, up to 6.1 for 8 CPUs, because the dummy objects
correspond to a lot of ‘0’ bits and result in load imbalance
among the CPUs. We expect better performance with a
more sophisticated load-balancing algorithm. For a typical
value of k = 768 bits, 1DApprox finishes in 1sec, whereas
ExactNN needs 6sec.

 0

 5

 10

 15

 20

 25

 30

 35

 1280 1024 768 512 256

S
er

ve
r

T
im

e
(s

ec
)

Modulus Bits (k)

1 CPU 4 CPU2 CPU 8 CPU

1DApprox

 0
 10
 20
 30
 40
 50
 60
 70
 80

 1280 1024 768 512 256

S
er

ve
r

T
im

e
(s

ec
)

Modulus Bits (k)

ExactNN

Figure 22: Parallel execution, Sequoia set

7.4 User CPU Time
The user is typically equipped with a slow PDA; there-

fore he cannot afford expensive computations. However,
our experiments show that the CPU cost for the user is
low. In Figure 23.a we use the real dataset and vary k.
The user needs to generate random k-bit numbers and per-
form QR/QNR verifications of the k-bit replies. For typical
k = 768, the CPU time does not exceed 0.6sec. In Fig-
ure 23.b we set k = 768 and vary the data size (we use the
Gaussian dataset). When the data size increases, so does

7For the execution time optimization experiments, we use
square PIR matrices for both 1DApprox and ExactNN

 0

 0.2

 0.4

 0.6

 0.8

 1

 1280 1024 768 512 256

C
lie

nt
 T

im
e

(s
ec

)

Modulus Bits (k)

1DApprox ExactNN

(a) (b)

 0

 0.1

 0.2

 0.3

 0.4

100k75k50k25k10k

C
lie

nt
 T

im
e

(s
ec

)

Data Size

Figure 23: User CPU time

the number of columns in matrix M . Consequently, the size
of the query vector y , as well as the size of the reply vector
z, increases. The resulting CPU time is always lower than
0.4sec.

7.5 PIR vs. Anonymizer-based Methods
We compare our methods with Hilbert Cloak (HC) [17],

which offers privacy guarantees for snapshot queries, and
outperforms other cloaking-based location privacy techniques
in terms of overhead, i.e. size of cloaking region (CR). Di-
rect comparison is difficult, since the architectures are com-
pletely different and there are many unknowns (e.g., how
many users subscribe in the anonymizer service, how of-
ten they update their location, how often they ask private
queries, etc). Instead we study the number of POIs that the
user learns from each query (recall from Section 3 that the
user is charged by the number of retrieved POIs).

 0

 500

 1000

 1500

 2000

128K64K32K16K8K4K2K1K

P
O

I

Users
(a) (b)

HC,K=20
1DApprox
ExactNN

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50
P

O
I

K (degree of anonymity)

HC,16K users
1DApprox
ExactNN

Figure 24: PIR vs. K-anonymity, Sequoia set

We consider the Sequoia dataset, and for HC we generate
a number of subscribed users between 1K and 128K, at lo-
cations that follow the POI data distribution (as discussed
in Section 7.1). Figure 24.a shows the number of disclosed
POI for varying number of subscribed users, and a value of
anonymity degree K of 20 (i.e., 5% probability of identify-
ing the source). If the number of subscribed users is low,
the size of the generated CR is large, and a huge number
of POIs are included in the result. Only for a very large
number of subscribers does the POI count become compa-
rable with that of 1DApprox, which is roughly 250 for the
Sequoia set. The number of disclosed POIs is even lower for
ExactNN (i.e., 15 POIs in average), due to the rectangular
PIR matrix. This result shows that, in order to maintain
a reasonable degree of disclosed POIs (i.e., a compact CR),
cloaking-based methods need to have a large number of sub-
scribed users. This translates into a high cost of location
updates (mobile users change location frequently), and also
poses privacy concerns, since all users must be trustworthy.
The disclosed POI number is constant for PIR methods, be-
cause no subscribed users are required.

In Figure 24.b we fix the number of subscribed users to
16,000 and vary K. HC discloses the same number of POI

131

as ExactNN for K < 10, which means that the identification
probability of HC exceeds 10%. However, the identification
probability of ExactNN is 1

|U| � 1
K

, where U is the set of

all possible users (see Section 3.2).

7.6 Discussion
The experimental results show that, although our PIR

techniques are relatively expensive compared to usual query
execution, the overhead is still reasonable. For the real
dataset and a typical value of k = 768 bits, the commu-
nication cost for 1DApprox and ExactNN is roughly 1MB
and 2MB, respectively. The corresponding CPU time at
the server is 1sec and 6sec, respectively (by employing op-
timization and/or using multiple CPUs). The CPU time at
the user is 1sec at most, and the number of disclosed POIs
(hence the resulting financial cost of using the LBS), is low.

Existing cloaking-based approaches have many hidden ef-
ficiency issues, such as handling location updates, and man-
aging a large number of user requests. In addition, existing
methods have important drawbacks of qualitative nature:
First, they lack privacy guarantees for continuous queries
(i.e., correlation attack), and fail completely if some of the
users are malicious. Second it may not be commercially fea-
sible to gather the required large number of subscribers who
will offer continuously their resources for a sporadic bene-
fit. Third, there may be legal reasons which prohibit the
anonymizer to gather locations of users.

8. CONCLUSIONS
In this paper, we employed the Private Information Re-

trieval theory to guarantee privacy in location-dependent
queries. To the best of our knowledge, this is the first
work to provide a practical PIR implementation with opti-
mizations that achieve reasonable communication and CPU
cost. Compared to previous work, our architecture is sim-
pler, more secure (i.e., does not require an anonymizer or
collaborating trustworthy users), and is the first one to pro-
tect against correlation attacks.

Currently, we are working on sophisticated heuristics to
generate better optimized execution plans, in order to reduce
further the CPU cost. In the future, we plan to investigate
the extension of our framework to different types of queries,
such as spatial joins.

9. REPEATABILITY ASSESSMENT RESULT
The results in Figures 16–21 and Figure 23 were verified by

the SIGMOD repeatability committee. The committee has
been unable to repeat the experiment described in Figure 22
due to the lack of appropriate hardware.

10. REFERENCES
[1] G. Aggarwal, N. Mishra, and B. Pinkas. Secure

Computation of the k th-Ranked Element. In Proc. of Int.
Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT), pages 40–55,
2004.

[2] R. Agrawal, T. Imielinski, and A. N. Swami. Mining
Association Rules between Sets of Items in Large
Databases. In Proc. of ACM SIGMOD, pages 207–216,
1993.

[3] R. Cheng, Y. Zhang, E. Bertino, and S. Prabhakar.
Preserving user location privacy in mobile data

management infrastructures. In Int. Workshop on Privacy
Enhancing Technologies, pages 393–412, 2006.

[4] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan.
Private information retrieval. In IEEE Symposium on
Foundations of Computer Science, pages 41–50, 1995.

[5] C.-Y. Chow and M. F. Mokbel. Enabling Private
Continuous Queries for Revealed User Locations. In Proc.
of SSTD, pages 258–275, 2007.

[6] C.-Y. Chow, M. F. Mokbel, and X. Liu. A Peer-to-Peer
Spatial Cloaking Algorithm for Anonymous Location-based
Services. In ACM International Symposium on Advances in
Geographic Information Systems, 2006.

[7] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf. Computational Geometry: Algorithms and
Applications. Springer-Verlag, 2nd edition, 2000.

[8] R. Fagin. Combining Fuzzy Information from Multiple
Systems. In Proc. of ACM PODS, pages 216–226, 1996.

[9] J. Feigenbaum, Y. Ishai, T. Malkin, K. Nissim, M. Strauss,
and R. N. Wright. Secure Multiparty Computation of
Approximations. In Int. Colloquium on Automata,
Languages and Programming (ICALP), 2001.

[10] D. E. Flath. Introduction to Number Theory. John Wiley &
Sons, 1988.

[11] B. Gedik and L. Liu. Location Privacy in Mobile Systems:
A Personalized Anonymization Model. In Proc. of ICDCS,
pages 620–629, 2005.

[12] G. Ghinita, P. Kalnis, and S. Skiadopoulos. PRIVE:
Anonymous Location-based Queries in Distributed Mobile
Systems. In Proc. of Int. Conference on World Wide Web
(WWW), pages 371–380, 2007.

[13] O. Goldreich. The Foundations of Cryptography, volume 2.
Cambridge University Press, 2004.

[14] M. Gruteser and D. Grunwald. Anonymous Usage of
Location-Based Services Through Spatial and Temporal
Cloaking. In Proc. of USENIX MobiSys, 2003.

[15] H. Hu and D. L. Lee. Range Nearest-Neighbor Query.
IEEE TKDE, 18(1):78–91, 2006.

[16] P. Indyk and D. P. Woodruff. Polylogarithmic Private
Approximations and Efficient Matching. In Proc. of Theory
of Cryptography Conference (TCC), pages 245–264, 2006.

[17] P. Kalnis, G. Ghinita, K. Mouratidis, and D. Papadias.
Preventing Location-Based Identity Inference in
Anonymous Spatial Queries. IEEE TKDE,
19(12):1719–1733, 2007.

[18] A. Khoshgozaran and C. Shahabi. Blind Evaluation of
Nearest Neighbor Queries Using Space Transformation to
Preserve Location Privacy. In Proc. of SSTD, pages
239–257, 2007.

[19] E. Kushilevitz and R. Ostrovsky. Replication is NOT
needed: Single database, computationally-private
information retrieval. In IEEE Symposium on Foundations
of Computer Science, pages 364–373, 1997.

[20] M. F. Mokbel, C. Y. Chow, and W. G. Aref. The New
Casper: Query Processing for Location Services without
Compromising Privacy. In Proc. of VLDB, 2006.

[21] B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz.
Analysis of the Clustering Properties of the Hilbert
Space-Filling Curve. IEEE TKDE, 13(1):124–141, 2001.

[22] P. Samarati. Protecting Respondents’ Identities in
Microdata Release. IEEE TKDE, 13(6):1010–1027, 2001.

[23] M. Shaneck, Y. Kim, and V. Kum. Privacy Preserving
Nearest Neighbor Search. In Int. Workshop on Privacy
Aspects of Data Mining (PADM), 2006.

[24] R. Sion and B. Carbunar. On the Computational
Practicality of Private Information Retrieval. In Proc. of
Network and Distributed System Security Symposium
(NDSS), 2007.

[25] J. Vaidya and C. Clifton. Privacy-Preserving Top-K
Queries. In Proc. of ICDE, pages 545–546, 2005.

132

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

